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Abstract
The projection of a two-dimensional planar system on the higher Landau
levels of an external magnetic field is formulated in the language of the non-
commutative plane and leads to a new class of star products.

PACS numbers: 05.30.−d, 11.10.−z, 05.70.Ce, 05.30.Pr

1. Introduction

Consider a two-dimensional Hamiltonian of a particle in a scalar potential V (z, z̄) coupled to
a magnetic field B, in the symmetric gauge (e = h̄ = m = 1)

H(z) = −2∂∂̄ + ωc(z̄∂̄ − z∂) + 1
2ω

2
czz̄ + V (z, z̄). (1)

We assume without any loss of generality that B � 0 and denote by ωc = +B/2 half the
cyclotron frequency. The model (1), with the potential V random due to impurities, is central
to the present understanding of the integer quantum Hall effect [1].

It is well known that by projecting (1) on the lowest Landau level (LLL) spanned by the
states

ψ(z) = f (z) e− ωc
2 zz̄ (2)

where f (z) is analytic, one obtains an eigenvalue equation

:V

(
z,

1

ωc

∂z

)
: f (z) = (E − ωc)f (z). (3)

The normal ordering : : means that the differential operator 1
ωc
∂ is put on the left of z.

Equation (3) is a reformulation of the Peierls substitution [2] (which does not specify the
correct ordering in general) and as such has been derived in [3] (which specifies the correct
ordering).
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Clearly, the usual two-dimensional plane has been traded for a non-commutative space[
1

ωc

∂z, z

]
= 1

ωc

. (4)

In view of the above commutation relation, the non-commutative space can be interpreted
as the phase space corresponding to a one-dimensional space. However this interpretation
may not be entirely satisfactory because z is a complex coordinate. There is another natural
interpretation in terms of a non-commutative space which is a two-dimensional plane with
non-commuting ‘real’ coordinates (X, Y ). This point of view has been recently used in the
context of the quantum Hall effect [4]. The algebra of operators depending on the two non-
commutative coordinates (X, Y ) is equivalent [5] to a deformation of the classical algebra
of functions on the usual commutative plane with coordinates (x, y). This deformation is
defined through a non-commutative star product. We will review this construction below in
a self-contained way, giving, as a by-product, a more systematic and more simple derivation
of (3).

The main point of this paper is to show that non-commutative geometry is by no means
specific to the LLL projection but can be obtained as well by projecting the two-dimensional
system on any given higher Landau level. As an illustration the case of the first Landau level
(1LL) will be analysed in detail. We will generalize the Peierls substitution to the 1LL and
reformulate it in a non-commutative plane language. We will find that although the canonical
commutation relation between the non-commutative coordinates will be the same as for the
LLL, a new non-commutative star product will appear to be naturally connected with the 1LL.
We will then give the general expression for the star product associated with any given Landau
level, thereby defining a new class of star products [6].

It might be objected that projecting a system on a given higher Landau level is counter-
intuitive: usually the LLL projection is regarded as physically justified when the cyclotron
gap h̄ωc is sufficiently large. Thus the LLL projection is associated with a strong magnetic
field compared to the temperature and/or to the potential so that the excited states above
the LLL can be ignored. For an electron gas the filling of the Fermi–Landau sea up to the
nth Landau level requires us to consider a projection on all n levels. In many instances one
can neglect the mixing between different levels so that each level is treated separately. In
any case, restricting the two-dimensional Hilbert space to a given Landau level subspace is a
well-defined mathematical procedure, and will be considered as such in what follows.

Before starting let us recall that the Landau spectrum is made of degenerate Landau levels
(2n+ 1)ωc, n � 0 with the nth Landau level eigenstates labelled by the radial/orbital quantum
numbers n, l � 0 (analytic) and n + l,−n � l < 0 (anti-analytic). There are, in a given
Landau level, an infinite number of analytic eigenstates

〈z, z̄|n, l〉 = zlLl
n(ωczz̄) e− 1

2 ωczz̄ l � 0 (5)

and a finite number of anti-analytic eigenstates

〈z, z̄|n + l, l〉 = z̄−lL−l
n+l(ωczz̄) e− 1

2 ωczz̄ −n � l < 0. (6)

2. Projection on the LLL

In the LLL, n = 0, l � 0, the eigenstates are analytic

〈z, z̄|0, l〉 =
(
ω�+1
t

π�!

) 1
2

z� e− 1
2 ωtzz̄ � � 0. (7)
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Consider the projector on the LLL Hilbert space Po = ∑∞
l=0 |0, l〉〈0, l|

〈z, z̄|Po|z′, z̄′〉 = ωc

π
e− 1

2 ωc(zz̄+z′z̄′−2zz̄′). (8)

A state of the LLL |ψ〉 = ∑∞
l=0 al|0, l〉, is analytic up to the Landau–Gaussian factor

〈z|ψ〉 = f (z) e− 1
2 ωczz̄ (9)

with

f (z) =
∞∑
l=0

alz
l. (10)

One can check that |ψ〉 satisfies Po|ψ〉 = |ψ〉.
Then projecting the Hamiltonian (1) on the LLL

〈z, z̄|PoHPo|ψ〉 = 〈z, z̄|PoH |ψ〉 =
∫

dz′ dz̄′ωc

π
e− 1

2 ωc(zz̄+z′z̄′−2zz̄′)H (z′)f (z′) e− 1
2ωcz

′ z̄′
. (11)

Using the Bargman identity

ωc

π

∫
dz′ dz̄′ e−ωc(z

′ z̄′−zz̄′)h(z′) = h(z) (12)

it is immediate to see that the eigenvalue equation

〈z, z̄|PoHPo|ψ〉 = E〈z, z̄|ψ〉 (13)

or ∫
dz′ dz̄′ωc

π
e−ωc(z

′ z̄′−zz̄′)(ωc + V (z′, z̄′))f (z′) = Ef (z) (14)

can be transformed into a differential equation which is precisely the Peierls substitution
equation (3).

3. Projection on the 1LL

Consider now the projection on the 1LL Hilbert space P1 = ∑∞
l=0 |1, l〉〈1, l| + |0,−1〉〈0,−1|

〈z, z̄|P1|z′, z̄′〉 = 〈z, z̄|P0|z′, z̄′〉[1 − ωc(z
′ − z)(z̄′ − z̄)]. (15)

Using Ll
1(ωczz̄) = l + 1 − ωczz̄ one obtains that a state of the 1LL |ψ〉 = ∑∞

l=0 al|1, l〉 +
a−1|0,−1〉 is of the form

〈z, z̄|ψ〉 = (f (z) + z̄g(z)) e− 1
2 ωczz̄ (16)

with f (z) and g(z) analytic,

f (z) = − 1

ωc

∂g(z) (17)

and

g(z) = −ωc

∞∑
l=0

alz
l+1 + a−1. (18)

Another way to recover this result is to impose equivalently that P1|ψ〉 = |ψ〉, i.e.,∫
dz′ dz̄′〈z, z̄|P1|z′, z̄′〉〈z′, z̄′|ψ〉 = 〈z, z̄|ψ〉. (19)
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One first infers that necessarily 〈z, z̄|ψ〉 = (f (z) + z̄g(z)) e− 1
2ωczz̄. Equation (19) then

becomes∫
dz′ dz̄′ωc

π
e−ωc(z

′ z̄′−zz̄′)[1 − ωc(z
′ − z)(z̄′ − z̄)](f (z′) + z̄′g(z′)) = f (z) + z̄g(z) (20)

and finally

− 1

ωc

∂g(z) + z̄g(z) = f (z) + z̄g(z). (21)

The relation (17) directly follows.
Now we project the Hamiltonian (1) on the 1LL,

〈z, z̄|P1HP1|ψ〉 =
∫

dz′ dz̄′〈z, z̄|P1|z′, z̄′〉〈z′, z̄′|H |ψ〉. (22)

The eigenvalue equation

〈z, z̄|P1HP1|ψ〉 = E〈z, z̄|ψ〉 (23)

becomes∫
dz′ dz̄′ωc

π
e−ωc(z

′ z̄′−zz̄′)[1 − ωc(z
′ − z)(z̄′ − z̄)]V (z′, z̄′)(f (z′) + z̄′g(z′))

= (E − 3ωc)(f (z) + z̄g(z)). (24)

Using (12) again one transforms (24) into the differential equation

− 1

ωc

∂

(
: V +

1

ωc

∂∂̄V : g(z)

)
+ z̄ : V +

1

ωc

∂∂̄V : g(z) = (E − 3ωc)(f (z) + z̄g(z)) (25)

where it is again understood that z̄ is replaced by 1
ωc
∂ both in V and in ∂∂̄V , and then the

normal ordering is taken.
As an example, consider V (z, z̄) = ω2

czz̄/2. We obtain from (25)

ωc

2
(3 + z∂)g = (E − 3ωc)g(z)

(26)ωc

2
(4 + z∂)f = (E − 3ωc)f (z).

It is easy to see that the pair of equations lead to the spectrum E − 3ωc = ωc(3 + l)/2, l � 0.
For a generalV (z, z̄) this conclusion still holds true: the 1LL projection induces an eigenvalue
equation

:V

(
z,

1

ωc

∂

)
+

1

ωc

∂̄∂V

(
z,

1

ωc

∂

)
: g(z) = (E − 3ωc)g(z) (27)

where g(z) is analytic. The equation for f (z) is obtained by differentiating (27) with respect
to z. Equation (27) is, in the 1LL, the analogue of the LLL Peierls substitution equation (3).

4. Non-commutative plane and � products

LLL quantum mechanics can be equivalently reformulated in a non-commutative geometry
setting. It is tempting to generalize this construction to higher Landau levels, which results
in a class of non-commutative "n products associated with the higher Landau level projection.
Let us first start by recalling the LLL non-commutative formulation.
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4.1. Lowest Landau level

Consider the non-commutative guiding centre coordinates

X = 1

2

(
z +

1

ωc

∂

)
Y = 1

2i

(
z − 1

ωc

∂

)
. (28)

They satisfy the commutation relation

[X,Y ] = 1

2iωc

. (29)

We have seen in (3) that the LLL operator associated with the classical potential V (x, y) is

:V

(
z,

1

ωc

∂z

)
: . (30)

Introducing the Fourier transform of the classical potential

V (x, y) =
∫

dk dl ei(kx+ly)Ṽ (k, l) =
∫

dk dl ei( k2 (z+z̄)+ l
2i (z−z̄))Ṽ (k, l) (31)

and using (28) the operator (30) can be written as

V̂ (0)(X, Y ) =
∫

dk dl : eikX+ilY : Ṽ (k, l) (32)

inducing a mapping between a classical potential and an operator. Note that (32) is different
from the Weyl ordering which is often used in the field theory context [5] and corresponds to
dropping the normal order double colons in (32). Note also that for further use, thanks to the
identity

:eikX+ilY : = e− 1
8ωc

(k2+l2)eikX+ilY (33)

one has

V̂ (0)(X, Y ) =
∫

dk dl e− 1
8ωc

(k2+l2) eikX+ilY Ṽ (k, l). (34)

Equation (32) induces a non-commutative product f "0 g between any two classical functions
f (x, y) and g(x, y) such that

f̂ (0)(X, Y )ĝ(0)(X, Y ) = (f "̂0 g)
(0)(X, Y ). (35)

A straightforward computation leads to

(f "0 g)(x, y) = e− 1
4ωc

(∂ ′
x+i∂ ′

y)(∂x−i∂y)f (x, y)g(x ′, y ′)|x=x′ ,y=y′ (36)

and

(f "̃0 g)(k, l) =
∫

dk′ dl′f̃ (k − k′, l − l′)g̃(k′, l′) e
i

4ωt
(kl′−lk′) e− 1

4ωc
(k′2+l′2−kk′−ll′). (37)

The Fourier transform (37) of f "0 g is a ‘deformation’ of the usual convolution product of
the Fourier transforms of f and g. The canonical commutation relation may be expressed as

x "0 y − y "0 x = 1

2iωc

. (38)

In terms of the non-commutative coordinates (X, Y ) the eigenvalue equation (3) acting on
f (z) can be rewritten as

V̂ (0)(X, Y )f (X + iY ) = (E − ωc)f (X + iY ). (39)

Looking at f (X + iY ) ≡ f̂ (0) as an operator and using (34) one finds that (39) is equivalent to

(V "̂0 f )
(0)(X, Y ) = (E − ωc)f (X + iY ). (40)

In other words the eigenvalues of (3) and of the operator equation (40) are identical. Note
finally that the analyticity of f implies V "0 f = Vf , and therefore (V̂f )(0)(X, Y ) =
(E − ωc)f (X + iY ).3

3 Of course it does not imply that Vf (x + iy) = (E − ωc)f (x + iy).
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4.2. First Landau level

As seen in (27), the 1LL operator associated with the potential V (x, y) is

:V

(
z,

1

ωc

∂

)
+

1

ωc

∂̄∂V

(
z,

1

ωc

∂

)
: . (41)

This can be re-expressed as

V̂ (1)(X, Y ) =
∫

dk dl : eikX+ilY :

(
1 − 1

4ωc

(k2 + l2)

)
Ṽ (k, l). (42)

Using the commutation relation (29) one can check that

(k2 + l2) eikX+ilY = [X, [X, eikX+ilY ] + [Y, [Y, eikX+ilY ]. (43)

Thus from (33) and (43) we find

V̂ (1)(X, Y ) = V̂ (0)(X, Y ) +
1

4ωc

$̂V̂ (0)(X, Y ) (44)

where in (44)

$̂ = [X, [·,X] + [Y, [·, Y ] (45)

and

($̂V )(0)(X, Y ) = $̂V̂ (0)(X, Y ) (46)

is understood. Equation (43) suggests that the operator (45) is the non-commutative version
of the Laplacian [7].

The 1LL mapping (42) between a classical function and an operator induces a new star
product "1 such that for any two classical functions f (x, y) and g(x, y)

f̂ (1)(X, Y )ĝ(1)(X, Y ) = (f "̂1 g)
(1)(X, Y ). (47)

A differential expression for the "1 product can easily be found using (46). Indeed,

f̂ (1)ĝ(1) =
(
f̂ (0) +

1

4ωc

$̂f̂ (0)

)(
ĝ(0) +

1

4ωc

$̂ĝ(0)
)

=
(
f̂ (0) +

1

4ωc

$̂f
(0)

) (
ĝ(0) +

1

4ωc

$̂g
(0)

) (48)

so that

f "1 g =
(
f +

1

4ωc

$f

)
"0

(
g +

1

4ωc

$g

)
. (49)

Thus

f "1 g = e− 1
4ωc

(∂x−i∂y)(∂ ′
x+i∂ ′

y)

(
1 +

1

4ωc

$

)(
1 +

1

4ωc

$′
)
f (x, y)g(x ′, y ′)|x=x′ ,y=y′ . (50)

Note that it follows from (50) that the canonical commutation relation x "1 y − y "1 x = 1
2iωc

is identical to (38), i.e. it is the same as in the LLL.
In terms of the non-commutative coordinates X,Y the eigenvalue equation (27) becomes

V̂ (1)(X, Y )g(X + iY ) = (E − 3ωc)g(X + iY ) (51)

or equivalently

(V "̂1 g)
(1)(X, Y ) = (E − 3ωc)g(X + iY ) (52)

Note that since g(z) is analytic V "1 g = (
V + 1

4ωc
$V

)
g. Therefore (52) is nothing but((

V + 1̂
4ωc

$V
)
g
)(1)

(X, Y ) = (E − 3ωc)g(X + iY ).



Projection on higher Landau levels and non-commutative geometry 4483

4.3. Higher Landau level

Let us apply the same procedure as in the LLL and the 1LL to the nth Landau level (nLL). An
eigenstate is of the form

〈z, z̄|ψ〉 = (
f0(z) + z̄f1(z) + · · · + z̄nfn(z)

)
e− ωc

2 zz̄ (53)

with fn(z) analytic and

fi(z) = ω(i−n)
c (−1)(n−i) n!

i!(n − i)!

∂n−i

∂zn−i
fn(z). (54)

Projecting the Hamiltonian (1) on the nLL implies that fn(z) satisfies the eigenvalue equation

:
n∑

i=0

1

ωi
c

n!

i!2(n − i)!

∂2i

∂zi∂z̄i
V : fn(z) = (E − (2n + 1)ωc)fn(z) (55)

which can be viewed as the generalization of the LLL Peierls substitution equation (3) to the
nLL (details of the derivation of (53) and (55) can be found in [8]).

In a non-commutative plane formulation, the potential V (x, y) is replaced by the nLL
operator

V̂ (n)(X, Y ) =
∫

dk dl : eikX+ilY : Ṽ (k, l)

n∑
i=0

(
− 1

4ωc

)i
n!

i!2(n − i)!
(k2 + l2)i (56)

with also

V̂ (n)(X, Y ) =
n∑

i=0

(
1

4ωc

)i
n!

i!2(n − i)!
($̂)iV̂ (0)(X, Y ). (57)

This induces a "n product between classical functions such that f̂ (n)ĝ(n) = (f "̂n g)
(n): namely

one has

f "n g = e− 1
4ωc

(∂x−i∂y)(∂ ′
x+i∂ ′

y)D(n)
x,yD

(n)
x′ ,y′f (x, y)g(x

′, y ′)|x=x′ ,y=y′ (58)

where D(n)
x,y = ∑n

i=0

(
1

4ωc

)i n!
i!2(n−i)! ($)i . Note that the canonical commutation relation

associated with "n again narrows down to (38), i.e. to the LLL situation.

4.4. Hilbert space

Equation (56) gives a natural specification of nLL operators f̂ (n)(X, Y ) associated with
classical functions f (x, y). One can also construct a Hilbert space on which these operators
act and which turns out to be equivalent to the Bargmann space of analytic functions with the
scalar product 〈f |g〉 = (ωc/π)

∫
dz dz̄e−ωczz̄f̄ g.

Let us define the creation–annihilation operatorsA† = ω
1/2
c (X+iY ) andA = ω

1/2
c (X−iY )

and the corresponding Hilbert space spanned by the vectors A†n|0〉 acting on the vacuum |0〉
with A|0〉 = 0. Since [A,A†] = 1 we have

〈0| ei(kX+lY )|0〉 = e− 1
2 〈0|(kX+lY )2|0〉 = e− 1

8ωc
(k2+l2). (59)

If we now consider in the Hilbert space two states f̂ (n)|0〉 and ĝ(n)|0〉, their scalar product
becomes

〈0|f̂ (n)†ĝ(n)|0〉 = 〈0|(f̄ "̂n g)
(n)|0〉

=
∫

dk dl e− 1
4ωc

(k2+l2)(f̄ "̃n g)(k, l)

n∑
i=0

(
− 1

4ωc

)i
n!

i!2(n − i)!
(k2 + l2)i

= ωc

π

∫
dx dy e−ωc(x

2+y2)D(n)
x,y (f̄ "n g)(x, y). (60)
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The scalar product (60) is equivalent to the scalar product of the Bargmann space. Indeed for
any classical function f (x, y), one can always define a polynomial (analytic) function of A†

such that f̂ (n)|0〉 = pf (A
†)|0〉. The analyticity then implies that pf "n pg = pf pg so that

〈0|f̂ (n)†ĝ(n)|0〉 = ωc

π

∫
dx dy e−ωc(x

2+y2)p̄f (x − iy)pg(x + iy). (61)

Equations (40) and (52) can be viewed as bona fide eigenvalue equations on the Hilbert space
spanned by (A†)n|0〉,

V̂ (n)(X, Y )f (X + iY )|0〉 = (E − (2n + 1))f (X + iY )|0〉. (62)

Note finally that in (60) scalar products have been expressed in the operator language or
equivalently in terms of star products, leading to nontrivial identities4.

5. Conclusion

One has obtained the class of star products "n which generalize to the nth Landau level the
standard "0 product in the LLL. A non-commutative space can be thus defined each time
the two-dimensional Hilbert space is projected on a given Landau level. Accordingly, a
nLL Peierls subtsitution equation is obtained which generalizes the standard LLL Peierls
substitution equation. In each nLL subspace the space is non-commutative with a canonical
commutation relation x "n y − y "n x = 1

2iωc
. However, by considering altogether all the

nLL projections one should recover the full Landau spectrum and therefore the commutative
two-dimensional space.
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4 The scalar product

〈0|f̂ (n)†f̂ (n)|0〉 = ωc

π

∫
dx dy e−ωc(x

2+y2)D(n)
x,y (f̄ "n f )(x, y) (A)

must be non-negative for any f (x, y) although

D(n)
x,y(f̄ "n f )(x, y) =

∞∑
j=0

(−1)j

j !
(4ωc)

−jD(n)
x,y |(∂x + i∂y )jD(n)

x,yf (x, y)|2 (B)

is an alternating sum. As an illustration consider in the LLL (n = 0) f (x, y) = (x + iy)k(x − iy)l .
Then f̂ (0)(X, Y ) = (X − iY)l (X + iY)k so that for l > k we have f̂ (0)|0〉 = 0. This is satisfied if, evaluating
the right hand side of (A), the combinatorial identity

l∑
j=0

(−1)j
(j + k)(j + k − 1)...(j + 1)

(l − j)!j !
= 0 l > k � 0 (C)

is verified. An independent check can be made using the binomial expansion of dk

dxk
(1 − x)l |x=1 = 0 for l > k � 0.


